
## Reactions of 16-Electron Bis-acetylene Molybdenum and Tungsten Complexes with Isocyanides, Dienes, and Trispyrazolylborate Anion; Crystal and Molecular Structure of [Mo{(C<sub>3</sub>H<sub>3</sub>N<sub>2</sub>)<sub>2</sub>C<sub>3</sub>(CF<sub>3</sub>)<sub>3</sub>CH(CF<sub>3</sub>)}(η<sup>5</sup>-C<sub>5</sub>H<sub>5</sub>)]

By John L. Davidson, Michael Green, Judith A. K. Howard, Stewart A. Mann, Jeffrey Z. Nyathi, F. Gordon A. Stone,\* and Peter Woodward

(Department of Inorganic Chemistry, University of Bristol, Bristol BS8 1TS)

Summary Complexes  $[MX(CF_3C_2CF_3)_2(\eta^{5-}C_5H_5)]$  react with (a) isocyanides to form N-alkyltetrakis(trifluoromethyl)cyclopentadienimine compounds (M = Mo, X = CF<sub>3</sub>; M = W, X = Cl), (b) buta-1,3-diene to give a 17-electron complex (M = Mo, X = Cl), and (c) potassium trispyrazolylborate to give an unusual electronegatively substituted  $\eta^{3}$ -allylic system, (M = Mo, X = Cl), the identity of which has been established by a single crystal X-ray diffraction study.

WE have previously reported<sup>1</sup> the synthesis and structural characterisation of the 16-electron species  $[MX(RC_{3}R)_{2}-(\eta^{5}-C_{5}H_{5})]$  (M = Mo, W). We now describe initial studies of reactions of these unusual complexes.





SCHEME. (i) Bu<sup>t</sup>NC in Et<sub>2</sub>O, 1:1 molar ratio of reactants; (ii) CH<sub>2</sub>:CHCH:CH<sub>2</sub> in hexane; (iii) CH<sub>2</sub>:CHCH:CH<sub>2</sub> in CH<sub>2</sub>Cl<sub>2</sub>; (iv) CH<sub>2</sub>:CHCH:CH<sub>2</sub> in THF.

Treatment of  $[MoCl(PhC_2Ph)_2(\eta^5-C_5H_5)]$  with an excess of ButNC in CH2Cl2 at room temperature affords the monoacetylene cationic complex [Mo(PhC<sub>2</sub>Ph)(Bu<sup>t</sup>NC)<sub>3</sub>- $(\eta^{5}-C_{5}H_{5})^{+}$  (I) isolated as its hexafluorophosphate salt. A similar reaction between the mixed acetylene complexes  $[MCl(PhC_2Ph)(CF_3C_2CF_3)(\eta^5-C_5H_5)]$  (M = Mo, W) and Bu<sup>t</sup>NC in Et<sub>2</sub>O led to displacement of diphenylacetylene and formation of the complexes  $[M(CF_3C_2CF_3)(Bu^tNC)_3(\eta^5 C_5H_5$ ]Cl (II; M = Mo) and (III; M = W). Previously<sup>2</sup> the cations  $[Mo(RNC)_4(\eta^5-C_5H_5)]^+$  have been obtained by reaction of  $[MoX(CO)_3(\eta^5-C_5H_5)]$  (X = Cl, Br, I) with isocyanide under vigorous conditions. In contrast, treatment (Et<sub>2</sub>O, room temperature) of [MX(CF<sub>3</sub>C<sub>2</sub>CF<sub>3</sub>)<sub>2</sub>- $(\eta^{5}-C_{5}H_{5})$ ] (M = Mo, X = CF<sub>3</sub>; M = W, X = Cl) with  $\operatorname{But}NC$  (1:1) gave the 18-electron species (IV) and (V) (see Scheme). With a 2:1 molar ratio of reactants the reaction proceeded via (IV) and (V) to give respectively isomeric mixtures of the complexes (VI; M = Mo,  $X = CF_{3}$ )  $[v_{NC} 2180s, 2170s, and 1685s cm^{-1}]$  and (VII; M = W,

X = Cl)  $[v_{NC}$  2198s and 1690s cm<sup>-1</sup>], which are assigned the two illustrated structures containing a co-ordinated *N*-t-butyltetrakis(trifluoromethyl)cyclopentadienimine. In an analogous manner,  $[MoCl(CF_3C_2CF_3)_2(\eta^5-C_5H_5)]$  with CO affords the related cyclopentadienone complex  $[MoCl(CO)-{(CF_3)_4C_4CO}(\eta^5-C_5H_5)]$  (VIII)  $[v_{CO}$  2000vs and 1606s cm<sup>-1</sup>]. The complexes (VI), (VII), and VIII) have temperaturedependent <sup>1</sup>H and <sup>19</sup>F n.m.r. spectra consistent with the presence in solution of isomeric species, *e.g.*, (VIa) and (VIb).

Formation of (VI) and (VII) is important in that cyclisation of two acetylene molecules and one isocyanide molecule within the co-ordination sphere is demonstrated, thus providing an understanding of the mode of formation of organic nitrogen compounds in the Ni-, Pd-, and Co-catalysed<sup>3-5</sup> reaction of acetylenes and Bu<sup>t</sup>NC.

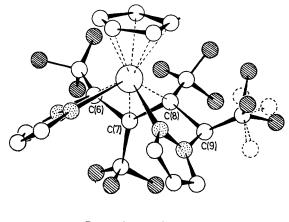





FIGURE. Molecular structure of (XII).

The 16-electron acetylene complexes also react with 1,3-dienes. Treatment (70 °C) of  $[MoCl(CF_3C_2CF_3)_2(\eta^5 C_{s}H_{5}$  ] with buta-1,3-diene in hexane, or of [MoCl(CO)- $(PhC_2Ph)(\eta^5-C_5H_5)$ ] with buta-1,3-diene in  $CH_2Cl_2$ , afforded the paramagnetic 17-electron species (IX), which was characterised by elemental analysis, i.r., and mass spectro-In tetrahydrofuran (70 °C), buta-1,3-diene and scopy.  $[MCl(CO)(PhC_{9}Ph)(\eta^{5}-C_{5}H_{5})]$  (M = Mo, W) give respectively the 18-electron complexes (X; M = Mo) [v<sub>co</sub> 1972  $cm^{-1}$ ] and (XI; M = W) [v<sub>co</sub> 1952 cm<sup>-1</sup>]. The <sup>1</sup>H n.m.r. spectrum in each case shows a single  $\eta^5$ -C<sub>5</sub>H<sub>5</sub> resonance, and resonances characteristic of 1-4- $\eta^4$  bonded buta-1,3-diene consistent with either structure (a) or (b). Complexes of this type have not been previously reported and cannot be obtained by reaction of buta-1,3-diene with  $[MCl(CO)_3(\eta^5-C_5H_5)]$ . This serves to emphasise the lability of the 16-electron species and their potential value as synthetic reagents. Whereas  $[MCl(CF_3C_2CF_3)_2(\eta^5-C_5H_5)]$ reacts with  $TlC_5H_5$  to give a complex in which the  $C_5$  ring is linked to one acetylene and the other acetylene remains  $\pi$ -bonded, the corresponding reaction with potassium trispyrazolylborate afforded an orange-red crystalline complex (XII), the structural identity of which could not be established by n.m.r. spectroscopy. However, a single crystal X-ray diffraction study established the unusual structure shown in the Figure. Crystal data: monoclinic, space group  $P2_1/n$ , a = 8.242(4), b = 17.537(9), c = 14.651(7) A,  $\beta = 97.62(5)^{\circ}$ ; Z = 4; R 0.065 for 2512 reflections [Syntex  $P2_1$  four-circle diffractometer, Mo- $K_{\alpha}$  X-radiation,  $\lambda = 0.71069 \text{ Å}].$ 

The molybdenum is essentially seven co-ordinate, showing a  $\eta^3$ -allylic linkage to three of the four carbon atoms of two condensed hexafluorobut-2-yne molecules. The two pyrazole rings are each  $\sigma$ -bonded to the Mo atom via one of the nitrogen atoms [mean Mo-N 2·17(1) Å], the  $\eta^{5}$ -C<sub>5</sub>H<sub>5</sub> ring occupying the remaining three co-ordination sites. The

fourth carbon atom, C(9), of the extended ring system, which carries a hydrogen atom, has a disordered CF, group. Important parameters for the electronegatively substituted  $\eta^{3}$ -allylic system are C(6)-C(7) 1.50(1), C(7)-C(8) 1.48(1), Mo-C(6) 2.14(1), Mo-C(7) 2.14(1), and Mo-C(8) 2.15(1) Å, indicating a symmetrically bonded complex. Although fluorine-substituted Mn<sup>6</sup> and Co<sup>7</sup>  $\eta^3$ -allyl complexes have been previously observed, formation of (XII) is unusual and must involve fragmentation of the trispyrazolylborate ligand.

A preliminary study of the reaction of [MoCl(CF<sub>3</sub>C<sub>2</sub>CF<sub>3</sub>)<sub>2</sub>- $(\eta^{5}-C_{5}H_{5})$ ] with bicyclo[2,2,1]heptadiene indicates that the product  $[MoCl\{(C_7H_8)(CF_3)_4C_4\}(\eta^5-C_5H_5)]$  has a similar  $\eta^{3}$ -allylic system to that found in (XII).

We thank the I.C.I. for the award of a Fellowship (J.L.D.) and the Commonwealth Scholarship Commission for a postgraduate Scholarship (J.Z.N.).

(Received, 17th July 1975; Com. 818.)

<sup>1</sup> J. L. Davidson, M. Green, D. W. A. Sharp, F. G. A. Stone, and A. J. Welch, J.C.S. Chem. Comm., 1974, 706.

- <sup>2</sup> R. B. King and M. S. Saran, Inorg. Chem., 1974, 13, 364.
- <sup>8</sup> H. Yamazaki, K. Aoki, Y. Yamamoto, and Y. Wakatsuki, Abs. 22nd. Symp. Organometallic Chem., Japan, 1974, 208B.
  <sup>4</sup> Y. Suzuki and T. Takazawa, J.C.S. Chem. Comm., 1972, 837.
- <sup>5</sup> M. Tautelat and K. Ley, Synthesis, 1970, 593.

<sup>6</sup> W. R. Cullen, L. Mihichuk, F. W. B. Einstein, and J. S. Field, J. Organometallic Chem., 1974, 73, C53. <sup>7</sup> P. B. Hitchcock and R. Mason, Chem. Comm., 1966, 503; R. S. Dickson, P. J. Fraser, and B. M. Gatehouse, J.S.C. Dalton, 1972, 2278.